

1 Saltwater reduces CO₂ and CH₄ production in organic soils from a coastal freshwater forested
2 wetland

3

4

5

5 Kevan J. Minick^{a*}, Bhaskar Mitra^b, Asko Noormets^b, John S. King^a

6

7 *“Department of Forestry and Environmental Resources, North Carolina State University,*
8 *Raleigh, NC, 27695, USA*

⁹ *^bDepartment of Ecosystem Science and Management, Texas A&M University, College Station,*
¹⁰ *TX, 77843, USA*

11

12

13

14

15

16

17

18

19

20

21

22

23

Keywords: *antennellid*, *antennule*, activity, *post-methacanthic*, *microbial biomass carbon*, β -C

24 **Abstract** A major concern for coastal freshwater wetland function and health is saltwater
25 intrusion and the potential impacts on greenhouse gas production. Coastal freshwater wetlands
26 are likely to experience increased hydroperiod with rising sea level, as well as saltwater
27 intrusion. These potential changes to wetland hydrology may also alter forest structure and lead
28 to a transition from forest to shrub/marsh wetland ecosystems. Loss of forested wetlands is
29 already evident by dying trees and dead standing trees (“ghost” forests) along the Atlantic Coast
30 of the US, which will result in significant alterations to plant carbon (C) inputs, particularly that
31 of coarse woody debris, to soils. We investigated the effects of salinity and wood C inputs on
32 soils collected from a coastal freshwater forested wetland in North Carolina, USA, and incubated
33 in the laboratory with either freshwater or saltwater (2.5 or 5.0 ppt) and with or without the
34 additions of wood. Saltwater additions at 2.5 ppt and 5.0 ppt reduced CO₂ production by 41 and
35 37 %, respectively, compared to freshwater. Methane production was reduced by 98 % (wood-
36 free incubations) and by 75-87 % (wood-amended incubations) in saltwater treatments compared
37 to the freshwater treatment. Additions of wood resulted in lower CH₄ production from the
38 freshwater treatment and higher CH₄ production from saltwater treatments compared to wood-
39 free incubations. The $\delta^{13}\text{CH}_4$ -C isotopic signature indicated that in wood-free incubations, CH₄
40 produced from the freshwater treatment was from the acetoclastic pathway, while CH₄ produced
41 from the saltwater treatments was more likely from the hydrogenotrophic pathway. These results
42 suggest that saltwater intrusion into subtropical coastal freshwater forested wetlands will reduce
43 CH₄ fluxes, but long-term changes in C dynamics will likely depend on how changes in wetland
44 vegetation and microbial function influences C inputs to the soil.

45

46

47 **1 Introduction**

48

49 Sea-level rise (SLR) threatens coastal regions around the world. Significantly, the rate of
50 SLR is not uniform around the globe, with the highest rate occurring along the Atlantic coast of
51 North America between Cape Hatteras and Cape Cod, due to factors including local currents,
52 tides and glacial isostatic rebound (Karegar et al., 2017; Sallenger et al., 2012). Along with
53 economic and cultural impacts, health of coastal forested ecosystems are expected to be impacted
54 by sea-level rise (Langston et al., 2017). For instance, salinization of coastal freshwater wetlands
55 will likely impact vegetation community dynamics and regeneration in low lying (< 1m)
56 wetlands (Langston et al., 2017). Understanding how coastal wetland ecosystems respond to
57 extreme events, long-term climate change and a rapidly rising sea is essential to developing the
58 tools needed for sustainable management of natural resources, and the building of resilient
59 communities and strong economies. Because it has more than 5,180 km² of coastal ecosystems
60 and urban areas below 1 m elevation, the state of North Carolina is highly vulnerable to climate
61 change and SLR and therefore saltwater intrusion (Riggs and Ames, 2008, Titus and Richman,
62 2001).

63 As sea level changes, coastal plant communities move accordingly up and down the
64 continental shelf. In recent geologic time, sea level has risen about 3 m over the past ~2,500
65 years from sea level reconstructions adjacent to our study site (Kemp et al., 2011). The rate of
66 SLR has varied greatly over that time, with periods of stability and change, and a geologically
67 unprecedented acceleration in recent decades. The current distribution of coastal forested
68 wetlands reflects the hydrologic equilibrium of the recent past climate, but the widespread
69 mortality of such forests suggests that the rate of SLR is in a time of rapid change at a rate

70 potentially faster than the forest's capacity to move upslope. Furthermore, dying coastal forests
71 will alter the quantity and quality of organic matter inputs to the soil as vegetation shifts occur,
72 as well as introduce a large pulse of woody debris into soils. This has the potential to alter C
73 cycling processes responsible for storage of C in the soil or loss of C as CO₂ and CH₄ (Winfrey
74 and Zeikus, 1977).

75 Wetlands store more than 25% of global terrestrial soil C in deep soil organic matter
76 deposits due to their unique hydrology and biogeochemistry (Batjes, 1996; Bridgman et al.,
77 2006). Carbon storage capacity is especially high in forested wetlands characterized by abundant
78 woody biomass, forest floors of *Sphagnum* spp., and deep organic soils. Across the US
79 Southeast, soil organic C (SOC) in soils increases with proximity to the coast and is greatest in
80 coastal wetlands (Johnson and Kern, 2003). Carbon densities are even higher in the formations
81 of organic soils (Histosols) that occur across the region, typically ranging from 687 to 940 t ha⁻¹,
82 but can be as high as 1,447 t ha⁻¹ (Johnson and Kern, 2003). As noted, forested wetlands, which
83 historically have contributed to terrestrial C sequestration, are in serious decline and processes
84 leading to destabilization of accumulated soil C are not represented in broad-scale ecosystem and
85 land-surface models. The extent of changes in soil C cycling processes attributable to altered
86 hydroperiod, saltwater intrusion and structural changes in vegetation in these ecosystems remains
87 unclear.

88 Saltwater intrusion, a direct result of SLR, into freshwater wetlands alters soil C cycling
89 processes (Ardón et al., 2016; Ardón et al., 2018), particularly that of methanogenesis (Baldwin
90 et al., 2006; Chambers et al., 2011; Dang et al., 2018; Marton et al., 2012), and microbial activity
91 (e.g., extracellular enzyme activity, Morrissey et al., 2014; Neubauer et al., 2013). Saltwater
92 contains high concentrations of ions, particularly SO₄²⁻, which support high rates of sulfate

93 reduction compared to freshwater wetlands (Weston et al., 2011). Sulfate acts as a terminal
94 electron acceptor in anaerobic respiration of soil organic C, and sulfate reducers will typically
95 increase in abundance in response to saltwater intrusion and out-compete other anaerobic
96 microorganisms particularly methanogens for C (Bridgman et al. 2013; Dang et al., 2019;
97 Winfrey and Zeikus, 1977). The effect of SO_4^{2-} on soil C cycling and competitive interactions
98 with other anaerobic microorganisms processes also appears dependent on the concentration of
99 the ion (Chambers et al., 2011). Even within freshwater forested wetlands, hydrology and
100 microtopography can interact to influence the amount of SO_4^{2-} within soils experiencing different
101 levels of saturation and therefore rates of SO_4^{2-} reduction (Minick et al., 2019a). A majority of
102 saltwater intrusion studies on soil C dynamics though have focused on tidal freshwater wetlands,
103 whereas non-tidal freshwater wetlands have received relatively little attention, partially due to
104 there being less dispersed geographically across the landscape. Nonetheless, they occupy critical
105 zones within the coastal wetland ecosystem distribution and will be influenced by SLR
106 differently than that of tidal wetlands. Tidal wetlands are likely to experience short-term pulses
107 of saltwater with tidal movement of water, while sea level rise effects on saltwater intrusion into
108 non-tidal wetlands may result in more long-term saltwater inundation. This difference in
109 saltwater inundation period may influence rates of soil CO_2 , CH_4 production, and microbial
110 activity (Neubauer et al., 2013) and therefore should be considered in light of the hydrologic
111 properties of specific wetlands.

112 Saltwater intrusion into freshwater systems may also influence the CH_4 producing
113 pathways (Dang et al., 2019; Weston et al., 2011), as a result of saltwater-induced shifts in
114 methanogenic microbial communities (Baldwin et al., 2006; Chambers et al., 2011; Dang et al.,
115 2019). Stable isotope analysis of CO_2 and CH_4 indicate that acetoclastic methanogenesis is the

116 major CH₄ producing pathway in these freshwater wetlands (Angle et al., 2016, Minick et al.,
117 2019b), but the influence of saltwater on the pathway of CH₄ formation in non-tidal freshwater
118 forested wetlands has rarely been studied, particularly through the lens of CO₂ and CH₄ stable C
119 isotope analysis. As ¹³C isotopic analysis of CH₄ is non-destructive and is long-proven as a
120 reliable indicator of the CH₄ production pathway (Whiticar et al., 1986), utilization of this
121 analysis provides easily attainable information on the effects of freshwater compared to saltwater
122 on CH₄ production dynamics in coastal wetland ecosystems experiencing SLR-induced changes
123 in hydrology and vegetation..

124 We used a laboratory experiment to investigate the effects of saltwater and wood
125 additions on CO₂ production, CH₄ production, and microbial activity in a non-tidal temperate
126 freshwater forested wetland in coastal North Carolina, US. Although many studies have focused
127 on salinity pulses in tidal freshwater wetlands, less attention has been given to the effects of
128 sustained saltwater intrusion on soil C dynamics. Therefore, we tested the effects of sustained
129 saltwater intrusion over the course of a 98 day laboratory incubation on soil C cycling and
130 microbial activity (e.g., microbial biomass C and extracellular enzyme activity). Furthermore,
131 we added wood to a subset of incubations in order to tease out effects of hydrology and wood
132 inputs on C cycling.

133

134 **2 Methods**

135

136 **2.1 Field Site Description**

137

138 The field site was located in the Alligator River National Wildlife Refuge (ARNWR) in
139 Dare County, North Carolina (35°47'N, 75°54'W). The ARNWR was established in 1984 and is
140 characterized by a diverse assemblage of non-tidal pocosin wetland types (Allen et al., 2011).
141 ARNWR has a network of roads and canals, but in general contains vast expanses of minimally
142 disturbed forested- and shrub-wetlands. Thirteen plots were established in a 4 km² area in the
143 middle of a bottomland hardwood forest surrounding a 35-meter eddy covariance flux tower
144 (US-NC4 in the AmeriFlux database; Minick et al., 2019a). Of the 13 plots (7 m radius), four
145 central plots were utilized for this study. Over-story plant species composition was
146 predominantly composed of black gum (*Nyssa sylvatica*), swamp tupelo (*Nyssa biflora*), bald
147 cypress (*Taxodium distichum*), with occasional red maple (*Acer rubrum*), sweet gum
148 (*Liquidambar styraciflua*), white cedar (*Chamaecyparis thyoides*), and loblolly pine (*Pinus*
149 *taeda*). The understory was predominantly fetterbush (*Lyonia lucida*), bitter gallberry (*Ilex*
150 *albra*), red bay (*Persea borbonia*), and sweet bay (*Magnolia virginiana*). The mean annual
151 temperature and precipitation from climate records of an adjacent meteorological station
152 (Manteo AP, NC, 35°55'N, 75°42'W, National Climatic Data Center) for the period 1981-2010
153 were 16.9 °C and 1270 mm, respectively. These wetlands are characterized by a hydroperiod
154 that operates over short time scales and is driven primarily by variable precipitation patterns.
155 Soils are classified as a Pungo series (very poorly managed dystic thermic typic Haplipsapt)
156 with a deep, highly decomposed muck layer overlain by a shallow, less decomposed peat layer
157 and underlain by highly reduced mineral sediments of Pleistocene origin (Riggs, 1996). Ground
158 elevation is below < 1 m above sea level. Sea-level rise models of coastal NC show that
159 ARNWR will experience almost complete inundation by 2100, with attendant shifts in
160 ecosystem composition (DOD, 2010).

161

162 **2.2 Sample Collection**

163

164 Soil samples were collected on February 6, 2018, from surface organic soils by removing
165 seven 10x10 cm² monoliths from hummocks to the depth of the root mat (approximately 6.3 cm)
166 using a saw and a 10x10 cm² PVC square. The seven soil samples were composited by plot and
167 stored on ice for transport back to the laboratory. In the laboratory, roots and large organic
168 matter were removed by hand and gently homogenized. Soils samples were stored at 4°C for
169 seven weeks before initiating the laboratory incubation.

170 Freshwater and saltwater for the experiment was collected from water bodies surrounding
171 the ARNWR on March 7, 2018. Freshwater was collected from Milltail Creek, which runs
172 Northwest from the center of ARNWR to Alligator River and is drainage for our forested
173 wetland study site. Freshwater salt concentration was 0 ppt. Saltwater was collected from
174 Roanoke Sound to the east of ARNWR and had a salt concentration of 19 ppt. Fresh- and salt-
175 water were mixed together to get the desired salt concentration for the saltwater treatments (2.5
176 and 5.0 ppt). Four water samples of each fresh- and salt-water mixture were sent to the NCSU
177 Environmental and Agricultural Testing Service laboratory for analysis of total organic C (TOC),
178 ammonium (NH₄⁺), nitrate (NO₃⁻), phosphate (PO₄³⁻), sulfate (SO₄²⁻), calcium (Ca²⁺), magnesium
179 (Mg²⁺), sodium (Na⁺), potassium (K⁺), and chlorine (Cl⁻).

180

181 **2.3 Incubation Setup**

182

183 Incubation water treatments included: 1) soils incubated at 65 % water holding capacity
184 (WHC) (Dry); 2) soils incubated at 100% WHC with freshwater (0 ppt); 3) soils incubated at
185 100% WHC with 2.5 ppt saltwater (2.5 ppt); and 4) soils incubated at 100% WHC with 5.0 ppt
186 (5.0 ppt). A subsample of each soil was dried at 105°C to constant mass to determine
187 gravimetric soil water content. Water holding capacity (WHC) was calculated by placing a
188 subsample of fresh soil (~2 g fresh weight) in a funnel with a Whatman #1 filter and saturating
189 with deionized H₂O (dH₂O). The saturated sample was allowed to drain into a conical flask for 2
190 h. After 2 h, the saturated soil was weighed, dried at 105°C to constant mass, and then weighed
191 again to determine WHC.

192 Two sets of incubations were set up with the above mentioned water treatments. We
193 added ¹³C-depleted American sweetgum (*Liquidamber styraciflua*) wood to half the incubation
194 vessels (0.22 g wood per g soil) (wood-amended), while the other half were incubated without
195 wood (wood-free). Trees were grown at the Duke FACE site under elevated CO₂ concentrations
196 (200 ppm CO₂ above ambient) using natural gas derived CO₂ with a depleted ¹³C signature
197 compared to that of the atmosphere (Feng et al., 2010; Schlesinger et al., 2006). The site was
198 established in 1983 after clear cut and burn (Kim et al., 2015). Trees were grown under elevated
199 CO₂ from 1994 to 2010 (Kim et al., 2015). Cookies were removed from harvested trees, dried at
200 to a constant moisture level and stored at -20 °C until use. For the current incubation study,
201 wood from control (non-fertilized) trees grown in the elevated CO₂ were used. The bark layer
202 was removed and the outer five to seven tree rings of multiple cookies was removed with a
203 chisel. Wood was then finely ground in a Wiley Mill (Thomas Scientific, Swedesboro, NJ,
204 USA) and analyzed for C content and ¹³C signature. Wood removed from the outer six tree rings

205 had a C content of $45.6 \pm 0.21\%$ and $\delta^{13}\text{C}$ value of $-40.7 \pm 0.06\text{\textperthousand}$, which was within the range
206 of -42 to -39 ‰ measured on fresh pine needles and fine roots (Schlesinger et al., 2006).

207

208 **2.4 CO₂ and CH₄ Analysis**

209

210 Headspace gas samples were collected from incubation vessels 15 times over the course
211 of the 98 d incubation (days 1, 4, 8, 11, 15, 19, 25, 29, 29, 47, 56, 63, 70, 84, 98). Incubation lids
212 were loosened between measurements to allow for gas exchange with the ambient atmosphere.
213 Prior to each measurement, incubation vessels were removed from incubators, sealed tightly, and
214 flushed at 20 psi for three minutes with CO₂/CH₄ free zero air (Airgas, Radnor, PA, USA).

215 Following flushing, incubation vessels were immediately placed in the dark (2-6 h over the first
216 39 days and 12-18 h over the remainder of the incubation) before taking a gas sample for
217 analysis. Approximately 300 mL of headspace gas was removed using a 50 mL gas-tight syringe
218 and transferred to an evacuated 0.5 L Tedlar gas sampling bag (Restek, Bellefonte, PA, USA).

219 Simultaneous analysis of CO₂ and CH₄ concentrations and $\delta^{13}\text{C}$ isotopic signature were
220 conducted on a Picarro G2201-i Isotopic CO₂/CH₄ Analyzer (Picarro Inc., Sunnyvale, CA USA).

221 Flux rates of CO₂-C and CH₄-C were calculated as well as daily cumulative CO₂-C and CH₄-C
222 production summed over the course of the 98 d incubation. Small subsamples of soil were
223 removed periodically from each incubation vessel for extracellular enzyme analysis (see below).

224 Incubation vessel water levels (mass basis) were checked and adjusted three times per week
225 using either freshwater or saltwater.

226 The proportion and rate of wood-derived CO₂ at each sampling date was calculated using
227 $^{13}\text{CO}_2$ data and using the ^{13}C of depleted wood (-40.07) in a two pool flux model, with the

228 depleted wood signature as the one end-point and the $^{13}\text{CO}_2$ of wood-free incubations as the
229 other endpoint. Total wood-derived CO_2 was calculated using cumulative CO_2 produced over
230 the 98 d incubation and the average $^{13}\text{CO}_2$ across the whole incubation.

231

232 **2.5 Soil Characteristics**

233

234 Soil organic C concentration and $\delta^{13}\text{C}$ was analyzed on initial soil samples and on soils
235 from each of the thirty incubations following the 98 d incubation period. Initial SOC properties
236 were measured on the four plot replicates prior to incubation. Soils were finely ground in a
237 Wiley Mill (Thomas Scientific, Swedesboro, NJ, USA) prior to analysis on a Picarro G2201-i
238 Isotopic CO_2/CH_4 Analyzer outfitted with a Costech combustion module for solid sample
239 analysis (Picarro Inc., Sunnyvale, CA USA).

240 Soil pH and redox potential ($\text{Eh} = \text{mV}$) were measured in each incubation within one
241 hour following sampling of headspace gas. Soil pH was measured on fresh soil samples with a
242 glass electrode in a 1:2 mixture (by mass) of soil and distilled water (dH_2O). Soil redox potential
243 ($\text{Eh} = \text{mV}$) was measured using a Martini ORP 57 ORP/ $^{\circ}\text{C}/^{\circ}\text{F}$ meter (Milwaukee Instruments,
244 Inc., Rocky Mount, NC, USA) .

245

246 **2.6 Microbial Biomass Carbon and $\delta^{13}\text{C}$ Isotopic Signature**

247

248 Microbial biomass C was estimated on soils collected from incubations on day 1 (after 24
249 hour post-treatment incubation) and day 98 (following the end of the incubation). The
250 chloroform fumigation extraction (CFE) method was adapted from Vance et al. (1987) in order

251 to estimate MBC and $\delta^{13}\text{C}$. Briefly, one subsample of fresh soil (approximately 0.5 g dry weight
252 each) was placed in a 50 mL beaker in a vacuum desiccator to be fumigated. Another subsample
253 was placed into an extraction bottle for immediate extraction in 0.5 M K_2SO_4 by shaking for 1 hr
254 and subsequently filtering through Whatman #2 filter paper to remove soil particles. The
255 samples in the desiccator were fumigated with ethanol-free chloroform (CHCl_3) and incubated
256 under vacuum for 3 d. After the 3 d fumigation, samples were extracted similar to that of
257 unfumigated samples. Filtered 0.5 M K_2SO_4 extracts were dried at 60 °C in a ventilated drying
258 oven and then ground to a fine powder with mortar and pestle before analysis of C concentration
259 and $\delta^{13}\text{C}$ on a Picarro G2201-i Isotopic CO_2/CH_4 Analyzer outfitted with a Costech combustion
260 module for solid sample analysis (Picarro Inc., Sunnyvale, CA USA). Microbial C biomass was
261 determined using the following equation:

262

263
$$\text{MBC} = \text{EC} / k_{\text{EC}}$$

264

265 where the chloroform-labile pool (EC) is the difference between C in the fumigated and
266 non-fumigated extracts, and k_{EC} (extractable portion of MBC after fumigation) is soil-specific
267 and estimated as 0.45 (Joergensen, 1996).

268 The $\delta^{13}\text{C}$ of MBC was estimated as the $\delta^{13}\text{C}$ of the C extracted from the fumigated soil
269 sample in excess of that extracted from the non-fumigated soil sample using the following
270 equation:

271

272
$$\delta^{13}\text{C}_{\text{MBC}} (\text{‰}) = (\delta^{13}\text{C}_f \times C_f - \delta^{13}\text{C}_{\text{nf}} \times C_{\text{nf}}) / (C_f - C_{\text{nf}})$$

273

274 where C_f and C_{nf} is the concentration (mg kg^{-1} soil) of C extracted from the fumigated
275 and non-fumigated soil samples, respectively, and $\delta^{13}\text{C}_f$ and $\delta^{13}\text{C}_{nf}$ is the ^{13}C natural abundance
276 (‰) of the fumigated and non-fumigated soil samples, respectively.

277

278 **2.5 Extracellular Enzyme Analysis**

279

280 The potential activity of five extracellular enzymes were quantified on initial soil samples
281 (day 0) and on days 1, 8, 35, and 98 of the soil incubation. The specific enzymes measured
282 were: β -glucosidase (BG; EC: 3.2.1.21), peroxidase (PER; EC: 1.11.1.7), β -glucosaminidase
283 (NAGase; EC: 3.2.1.30), alkaline phosphatase (AP; EC: 3.1.3.1), and arylsulfatase (AS; EC:
284 3.1.6.1). Substrates for all enzyme assays were dissolved in 50 mM, pH 5.0 acetate buffer
285 solution for a final concentration of 5 mM substrate.

286 Hydrolytic enzymes (BG and XYL) were measured using techniques outlined in
287 Sinsabaugh et al. (1993). Approximately 0.5 g dry weight of soil sample was suspended in 50
288 mL of a 50 mM, pH 5.0 acetate buffer solution and homogenized in a blender for 1 min. In a 2
289 mL centrifuge tube, 0.9 mL aliquot of the soil-buffer suspension was combined with 0.9 mL of
290 the appropriate 5 mM p-nitrophenyl substrate solution for a total of three analytical replicates.
291 Additionally, duplicate background controls consisted of 0.9 mL aliquot of soil-buffer
292 suspension plus 0.9 mL of acetate buffer and four substrate controls were analyzed consisting of
293 0.9 mL substrate solution plus 0.9 mL buffer. The samples were agitated for 2-5 hr. Samples
294 were then centrifuged at 8,160 g for 3 min. Supernatant (1.5 mL) was transferred to a 15 mL
295 centrifuge tube containing 150 μL 1.0 M NaOH and 8.35 mL dH₂O. The resulting mixture was
296 vortexed and a subsample transferred to a cuvette and the optical density at 410 nm was

297 measured on a spectrophotometer (Beckman Coulter DU 800 Spectrophotometer, Brea, CA,
298 USA).

299 The oxidative enzyme (PER) were measured using techniques outlined in Sinsabaugh et
300 al. (1992). PER is primarily involved in oxidation of phenol compounds and depolymerization
301 of lignin. The same general procedure for hydrolytic enzymes was followed utilizing a 5 mM L-
302 3,4-Dihydroxyphenylalanine (L-DOPA) (Sigma-Aldrich Co. LLC, St. Louis, MO, USA) solution
303 plus 0.2 mL of 0.3% H₂O₂ to all sample replicates and controls as the substrate. After set up of
304 analytical replicates and substrate and background controls, the samples were agitated for 2-3 hr.
305 Samples were then centrifuged at 8,160 g for 3 min. The resulting supernatant turns an intense
306 indigo color. Supernatant (1.4 mL) was transferred directly to a cuvette and the optical density at
307 460 nm was measured on a spectrophotometer.

308 For all enzymes, the mean absorbance of two background controls and four substrate
309 controls was subtracted from that of three analytical replicates and divided by the molar
310 efficiency (1.66/μmol), length of incubation (h), and soil dry weight. Enzyme activity was
311 expressed as μmol substrate converted per g dry soil mass per hour (μmol g⁻¹ h⁻¹).

312

313 2.6 Statistical Analysis

314

315 Water chemistry, cumulative CO₂ production, cumulative CH₄ production, cumulative
316 enzyme activity, post-incubation SOC concentration and δ¹³C SOC, and wood-derived and
317 wood-associated SOC, CO₂, and MBC were analyzed using one-way ANOVA (PROC GLM
318 package). Microbial biomass C, MBC ¹³C, pH, Eh, δ¹³CO₂, and δ¹³CH₄ were analyzed using
319 repeated-measures ANOVA (PROC MIXED package) with time (Time) as the repeated measure

320 and the incubation treatments as fixed effects. All data for wood-free and wood-amended soils
321 were analyzed separately. Raw data were natural log-transformed where necessary to establish
322 homogeneity of variance. If significant main effects or interactions were identified in the one-
323 way ANOVA or repeated-measures ($P < 0.05$), then post-hoc comparison of least-squares means
324 was performed. All statistical analyses were performed using SAS 9.4 software (SAS Institute,
325 Cary, NC, USA).

326

327 **3 Results**

328

329 **3.1 Water and Soil Properties**

330

331 Freshwater had higher concentrations of TOC compared to the saltwater treatments
332 (Table 1). Concentration of SO_4^{2-} , Cl^- , Na^+ , Ca^{2+} , Mg^{2+} , and K^+ were higher in saltwater
333 treatments compared to freshwater and were approximately twice as high in the 5.0 ppt saltwater
334 treatment compared to 2.5 ppt saltwater (Table 1).

335 Initial hummock SOC concentration was $490 \pm 27 \text{ g kg}^{-1}$ with a $\delta^{13}\text{C}$ value of $-28.5 \pm$
336 0.32 ‰. After 98 d of incubation, SOC concentration in wood-free incubations was lower in the
337 5.0 ppt saltwater treatment, although no difference in soil $\delta^{13}\text{C}$ was found between treatments
338 (Table 2). For wood-amended incubations, post-incubation SOC concentration was lower in the
339 5.0 ppt saltwater treatment compared to the dry and freshwater treatment (Table 2). The $\delta^{13}\text{C}$ of
340 wood-amended soils after 98 days of incubation was not different between treatments, but was
341 depleted in ^{13}C compared to wood-free soils.

342 Soil pH was significantly lower in the saltwater treatments in both wood-free and wood-
343 amended soils compared to the dry and freshwater treatments (Table 3; Figure 1a-b). After an
344 initial drop of pH in saltwater treatments to between 3.2 and 3.4 pH, pH steadily climbed back up
345 to between 4.0 and 4.2 pH (Figure 1a-b). In wood-free soils, differences in soil Eh between
346 treatments was variable over time, with both the 5.0 ppt saltwater treatment and the freshwater
347 treatment having the lowest redox potential at different time points throughout the incubation
348 (Table 3; Figure 1c), but never got below -124 mV on average. In wood-amended soils, Eh
349 dropped quickly to between -200 and -400 mV over the first 30 days for saltwater incubated soils
350 (Table 3; Figure 1d), before rising to between -100 to 0 mV for the rest of the incubation period.
351 In freshwater incubated soils, Eh rose quickly back to between -50 to 0 mV by day 15 and
352 remained at this level for the rest of the incubation period, while saltwater treatments had
353 significantly lower Eh between days 8 and 25.

354

355 **3.2 CO₂, CH₄, δ¹³CO₂-C, and δ¹³CH₄-C**

356

357 In wood-free incubations, cumulative CO₂ production was not different between the dry
358 and freshwater treatments, but were higher than that produced from saltwater treatments (Table
359 4; Figure 2a). Cumulative CO₂ produced from wood-amended soils was highest in the dry
360 treatment compared to all other treatments (Table 4; Figure 2b). Wood-derived CO₂ (calculated
361 as the difference between cumulative CO₂ produced from wood-amended and wood-free
362 incubations) was highest in the dry treatment (Table 4; Figure 2c). This finding was also
363 confirmed by calculating cumulative wood-derived C using the ¹³C two-pool mixing model, with

364 the highest proportion found in the dry treatment ($54 \pm 4.6\%$) compared to soils incubated with
365 freshwater ($42 \pm 1.7\%$), 2.5 ppt saltwater ($37 \pm 1.0\%$), and 5.0 ppt saltwater ($38 \pm 1.5\%$).

366 Cumulative CH₄ production was highest in the freshwater treatment compared to the
367 saltwater treatments in both wood-free and wood-amended incubations (Table 4; Figure 2d-e).

368 The difference between cumulative CH₄ produced from wood-amended and wood-free
369 incubations was lower (and exhibited a negative response to wood additions) in the freshwater
370 treatment compared to both saltwater treatments (Table 3; Figure 2f), which both had a slight
371 positive response to wood additions.

372 The CO₂:CH₄ ratio, in wood-free incubations, was calculated only for soils incubated
373 under saturated conditions with freshwater or saltwater. The CO₂:CH₄ ratio, in wood-free
374 incubations, was highest in freshwater (6 ± 3.4), compared to the 2.5 ppt saltwater (136 ± 33.9)
375 and 5.0 ppt saltwater (102 ± 30.3) ($F = 24.8$; $P = 0.0002$). The CO₂:CH₄ ratio, in wood-amended
376 incubations, was highest in freshwater (9 ± 0.8), compared to the 2.5 ppt saltwater (53 ± 20.3)
377 and 5.0 ppt saltwater (107 ± 37.7) ($F = 9.2$; $P = 0.007$).

378 The $\delta^{13}\text{CO}_2$ -C and wood-derived CO₂ (estimated by ¹³C two-pool mixing model)
379 exhibited a time by treatment interaction for both wood-free and wood-amended incubations
380 (Table 3; Figure 3a-b). In general, $\delta^{13}\text{CO}_2$ -C in wood-free and wood-amended incubations was
381 depleted in the dry treatment (and remained steady throughout the incubation period) compared
382 to all other treatments, especially after day 15. The proportion of wood-derived CO₂ was
383 initially higher in saltwater treatments but gradually dropped over the course of the incubation,
384 while the proportion of wood-derived CO₂ remained steady (approximately 50 %) for a good
385 portion of the incubation but increased in the final couple measurements periods to a maximum
386 of 75 % (Figure 3c).

387 The $\delta^{13}\text{CH}_4\text{-C}$ (Table 3; Figure 4) exhibited a treatment and time effect (Table 3; Figure
388 4a-b), but only for wood-free incubations. For wood-free incubations, average $^{13}\text{CH}_4\text{-C}$ across
389 the course of the incubation was most enriched in the freshwater treatment ($-67.8 \pm 2.4 \text{ ‰}$)
390 compared to the 2.5 ppt ($-80.1 \pm 2.4 \text{ ‰}$) and 5.0 ppt ($-82.3 \pm 2.0 \text{ ‰}$) saltwater treatments (Figure
391 4C). No difference in the $\delta^{13}\text{CH}_4\text{-C}$ was found in wood-amended incubations (Figure 4b, d),
392 ranging from between -78 to -75 ‰ for all treatments.

393

394 **3.3 Microbial Biomass Carbon and Extracellular Enzyme Activity**

395

396 Initially, in wood-free incubations, MBC was highest in the 2.5 ppt saltwater treatment
397 compared to the dry treatment (Table 3; Table 5). Following the 98 day incubation, MBC in
398 wood-free incubations was highest in the dry treatment, with no differences between the other
399 treatments. In wood-amended soils, no difference in MBC was found initially, but following the
400 98 day incubation MBC was highest in the dry treatment followed by the freshwater treatment
401 with the MBC of the saltwater treatments being the lowest. Initial $\delta^{13}\text{C}$ of MBC did not differ
402 between treatments in either the wood-free or wood amended soils (Table 3; Table 5). After the
403 98 day incubation, ^{13}C of MBC in the wood-free treatments was most depleted in the freshwater
404 treatment and most enriched in the 5.0 ppt saltwater treatment. In wood-amended incubations,
405 ^{13}C of MBC was most depleted in the dry treatment and most enriched in the freshwater and 5.0
406 ppt saltwater treatments. Furthermore, the proportion of wood-derived MBC (as estimated by
407 ^{13}C mixing model calculations) was highest in the dry treatment (31 %) and the 2.5 ppt saltwater
408 treatment (21%) compared to the freshwater treatment (4%) (Table 5).

409 In wood-free incubations, activity of BG, PER, and NAGase were higher in the dry
410 treatment compared to the saltwater treatments (Table 4; Table 5). Activity of AS was higher in
411 the dry and freshwater treatments compared to saltwater treatments, in both wood-free and
412 wood-amended incubations. In wood-amended incubations, BG and NAGase were highest in the
413 dry treatment compared to the saltwater treatments. In the freshwater treatment, wood addition
414 reduced activity of BG and NAGase compared to wood-free incubations (Figure 5a-b), but
415 enhanced PER activity (Figure 5c). Wood addition also reduced AS and P activity across all
416 treatments compared to wood-free incubations (Figure 5d-e).

417

418 **4 Discussion**

419

420 As forests within the lower coastal plain physiographic region of the southeastern US
421 continue to experience increasing stresses from sea level rise on hydrology, changes in microbial
422 C cycling processes should be expected. Our results, combined with other field and lab
423 experiments, confirm that saltwater intrusion into coastal freshwater wetlands can result in
424 reductions in CO₂ and CH₄ fluxes (Ardón et al., 2016; Ardón et al., 2018), but this will be
425 balanced by long- and short-term effects of saltwater intrusion on C cycling processes (Weston et
426 al., 2011) as well as changes in C inputs due to forest-marsh transition. Further, increased coarse
427 woody debris inputs to soils may reduce CH₄ emissions under freshwater conditions, but enhance
428 CH₄ emissions under saltwater conditions. Our results also clearly demonstrate that substantial
429 quantities of CH₄ can be produced from soils with redox potential between -100 to 100 mV,
430 which may be related to the specific pathway of CH₄ production (acetoclastic versus
431 hydrogenotrophic), and challenges the widespread assumption that methanogenesis only occurs

432 at very low redox potentials. The ARNWR is characterized by a hydroperiod that operates over
433 short time scales and is driven primarily by variable precipitation patterns (Miao et al., 2013),
434 which results in the influx of oxygenated waters. Periodic *in situ* measurements of redox
435 potential indicate that standing water is relatively aerated ($Eh = 175 - 260$ mV), while surface
436 soils of hummocks when not submerged are more aerated ($Eh = 320$ mV) than submerged
437 hollow surface soils ($Eh = 100 - 150$ mV) and deeper organic soils (20-40 cm depth; $Eh = 50 -$
438 90 mV). Furthermore, our results indicate that additions of new C to soils as wood may result in
439 short-term reductions in redox potential as anaerobic processes are enhanced due to the added C
440 substrate and terminal electron acceptors are quickly reduced. As SLR continues to rise over the
441 next century, more persistent saltwater intrusion may occur as rising brackish waters mix with
442 non-tidal freshwater systems having important implications for both above- and below-ground C
443 cycling dynamics. Although our study only looked at these effects in a controlled laboratory
444 experiment, these data provide a baseline understanding of potential changes in C cycling
445 dynamics due to SLR.

446 Saltwater additions decreased CO_2 production compared to freshwater in the wood-free
447 soils, although MBC and extracellular enzyme activity were not different between these
448 treatments. This has been found in other pocosin wetland soils on the coast of North Carolina
449 (Ardón et al. 2018). Variable effects of salinity (and or sulfate additions) have been found on soil
450 respiration, with some studies showing an increase (Marton et al., 2012; Weston et al., 2011), a
451 decrease (Lozanovska et al. 2016; Servais et al. 2019), or no change (Baldwin et al., 2006).
452 Krauss et al. (2012) found that permanently flooded saltwater treatments (expected in non-tidal
453 wetlands) in a simulated coastal swamp mesocosm reduced soil respiration, whereas saltwater
454 pulses (expected in tidal wetlands) had a variable effect on soil respiration. Alternatively, CO_2

455 production was not reduced in the saltwater compared to freshwater treatments in wood-amended
456 soils, while MBC was lower in the saltwater compared to freshwater, which suggests a shift in
457 microbial carbon use efficiency.

458 Methane production was higher in the freshwater compared to saltwater treatments in
459 both wood-amended and wood-free incubations. Numerous others studies have found that
460 saltwater reduces CH_4 fluxes compared to freshwater, both within the field and laboratory.
461 Reduced CH_4 production from saltwater treated soils primarily results from the availability of
462 more energetically favorable terminal electron acceptors (primarily SO_4^{2-}), which leads to the
463 competitive suppression of methanogenic microbial communities by sulfate reducing
464 communities (Bridgham et al., 2013; Chambers et al., 2011; Winfrey and Zeikus, 1977), as
465 methanogens and sulfate reducers compete for acetate and electrons (Le Mer and Roger, 2001).
466 Dang et al. (2019) did find partial recovery overtime of the methanogenic community following
467 saltwater inundation to freshwater soil cores, but interestingly this community resembled that of
468 microbes performing hydrogenotrophic methanogenesis and not acetoclastic methanogenesis.
469 Activity of arylsulfatase was also lower in saltwater amended soils. This also indicates a
470 functional change in the microbial community, as microbes in the saltwater treatment are
471 utilizing the readily available SO_4^{2-} pool, while microbes in the freshwater and dry treatments are
472 still actively producing SO_4^{2-} -liberating enzymes to support their metabolic activities. Findings
473 by Baldwin et al. (2006) support the effects of saltwater on changing the microbial community
474 structure as well, in which reductions in CH_4 production in NaCl treated freshwater sediments
475 were accompanied by a reduction in archaeal (methanogens) microbial population, establishing a
476 link between shifting microbial populations and changing CH_4 flux rates due to saltwater
477 intrusion.

478 Changes in fresh- and salt-water hydrology due to rising seas is leading to dramatic shifts
479 in the dominant plant communities within the ARNWR and across the southeastern US (Connor
480 et al., 1997; DOD, 2010; Langston et al., 2017). This has the potential to alter the soil C balance
481 due to introduction of large amounts of coarse woody debris as trees die. In our laboratory
482 experiment, additions of wood resulted in changes in both CO₂ and CH₄ production, but the
483 direction of change depended on if soils were incubated with freshwater or saltwater. Wood
484 additions increased CO₂ production except in the freshwater treatment. This was particularly
485 evident in the dry treatment where wood additions increased CO₂ production by approximately
486 32 %. For the dry treatment, wood-amended soils had the highest MBC and NAGase activity as
487 microbes were likely immobilizing more N to support metabolic activities in the presence of
488 added C (Fisk et al., 2015; Minick et al., 2017). Higher respiration with wood additions in the
489 saltwater treatments likely resulted from enhanced metabolic activity of sulfate reducing
490 microbes in the presence of an added C source. On the other hand, wood additions resulted in a
491 decline in CH₄ production from the freshwater treatment, while slightly enhancing CH₄
492 production from the saltwater treatments. Wood additions also resulted in much lower redox
493 potential, particularly in the saltwater treatments, and coupled with ¹³CH₄ stable isotope
494 composition may have driven the higher levels of CH₄ production (via hydrogenotrophic
495 methanogenesis) in the wood plus saltwater treatments. The suppression of CH₄ production by
496 wood additions in the freshwater treatment was somewhat surprising given the positive effects of
497 C additions on CH₄ production recently found in freshwater sediments (West et al. 2012), but
498 likely resulted from enhancement of other, more energetically favorable redox reactions with the
499 addition of a C source (e.g., wood). Furthermore, wood additions to freshwater incubations
500 resulted in a decrease in MBC and activity of BG and NAGase enzymes compared to wood-free

501 incubations, but an increase in PER activity. This suggests that the microbial communities have
502 altered their functional capacity in response to wood-addition when exposed to freshwater. The
503 $\text{CO}_2:\text{CH}_4$ ratio further indicated that, in freshwater, CH_4 production was quite high in relation to
504 CO_2 production. This ratio was significantly higher though for saltwater treatments as CH_4
505 production dropped drastically compared to freshwater.

506 Changes in the CH_4 production due to saltwater additions appears to be related to the
507 dominant CH_4 producing pathway. The $^{13}\text{CH}_4$ isotopic signature in wood-free freshwater
508 incubated soils indicated that acetoclastic methanogenesis was the dominant CH_4 producing
509 pathway, while hydrogenotrophic methanogenesis dominated in the saltwater treatment.
510 Acetoclastic methanogenesis produces isotopically enriched CH_4 compared to that of the
511 hydrogenotrophic methanogenesis (Chasar et al., 2000; Conrad et al. 2010; Krohn et al. 2017;
512 Sugimoto and Wada, 1993; Whiticar et al., 1986; Whiticar 1999), given that methanogens
513 discriminate against heavier $^{13}\text{CO}_2$ during the hydrogenotrophic methanogenesis. The differences
514 in C discrimination between the two pathways is greater for the hydrogenotrophic compared to
515 the acetoclastic pathway which results in more depleted (-110 to -60 ‰) and more enriched (-60
516 ‰ to -50 ‰) $^{13}\text{CH}_4$, respectively. This has been confirmed in field and laboratory experiments
517 (Conrad et al. 2010; Krohn et al. 2017; Krzycki et al., 1987; Sugimoto and Wada, 1993; Whiticar
518 et al., 1986; Whiticar, 1999). Baldwin et al. (2006) also found that saltwater additions promoted
519 the hydrogenotrophic methanogenic pathway. Further, Dang et al (2019) showed that saltwater
520 additions to soil cores resulted in a shift in the relative abundance of hydrogenotrophic
521 methanogens, supporting the idea that saltwater may alter not only the flux of CH_4 but also the
522 production pathway. Chambers et al. (2011) found a shift in the methanogenic microbial
523 community under saltwater treatments as well, which could have implications for the dominant

524 pathway of methane production. Previous work at our site showed that freshwater saturated soils
525 from different microsites (hummocks, hollows, and subsurface Oa horizon soil) also had $\delta^{13}\text{CH}_4$
526 values more like that found from CH_4 produced via acetoclastic methanogenesis (Minick et al.,
527 2019b).

528 Findings from this study indicate that substantial changes in the greenhouse gas flux and
529 microbial activity are possible due to saltwater intrusion into freshwater wetland ecosystems but
530 that the availability of C in the form of dead wood (as forests transition to marsh) may alter the
531 magnitude of this effect. Sea level rise will likely lead to dramatic changes in vegetation,
532 particularly transitioning forested wetlands into shrub or marsh wetlands. As forested wetlands
533 are lost, dead trees could provide a significant source of C to already C-rich peat soils. The long-
534 term effect of forest to marsh transition on ecosystem C storage will likely depend on the balance
535 between dead wood inputs and effects of sea level rise and vegetation change on future C inputs
536 and soil microbial C cycling processes. Future work should include investigation of these C
537 cycling and microbial processes at the field-scale and expand to a wider range of non-tidal
538 wetlands within the southeastern US region.

539

540 **Author contribution**

541

542 All authors contributed to the conception and design of the study. KM wrote the first draft of the
543 manuscript. KM collected the samples from the field and performed laboratory analysis. All
544 authors contributed to manuscript revision and approved the submitted version.

545

546 **Competing Interest**

547

548 The authors declare that they have no conflict of interest.

549

550 **Acknowledgements**

551

552 We thank numerous undergraduate researchers for their invaluable help collecting samples from
553 the field and analyzing samples in the laboratory. We also thank the anonymous reviewers for
554 their comments, which significantly improved the manuscript. Primary support was provided by
555 USDA NIFA (Multi-agency A.5 Carbon Cycle Science Program) award 2014-67003-
556 22068. Additional support was provided by DOE NICCR award 08-SC-NICCR-1072, the
557 USDA Forest Service Eastern Forest Environmental Threat Assessment Center award 13-JV-
558 11330110-081, and Carolinas Integrated Sciences and Assessments award 2013-0190/13-
559 2322. The USFWS Alligator River National Wildlife Refuge provided helpful scientific
560 discussions, the forested wetland research site, and valuable in-kind support.

561

562 **References**

563

564 Allen, T., Wang, Y., Gore, B., Swords, J., and Newcomb, D.: Coastal Wetland mapping using
565 time series SAR imagery and LiDAR: Alligator River National Wildlife Refuge, North
566 Carolina, in: Proceedings Pecora 18 Symposium, Herndon, Virginia, November 14-17,
567 2011.
568 Angle, J. C., Morin, T. H., Soden, L. M., Narrowe, A. B., Smith, G. J., Borton, M. A., Rey-
569 Sanchez, C., Daly, R. A., Mirfenderesgi, G., and Hoyt, D. W.: Methanogenesis in

570 oxygenated soils is a substantial fraction of wetland methane emissions, *Nature*
571 *communications*, 8, 1567, doi: 10.1038/s41467-017-01753-4, 2017.

572 Ardón, M., Helton, A. M., and Bernhardt, E. S.: Drought and saltwater incursion synergistically
573 reduce dissolved organic carbon export from coastal freshwater wetlands,
574 *Biogeochemistry*, 127, 411-426, doi: 10.1007/s10533-016-0189-5, 2016.

575 Ardón, M., Helton, A. M., and Bernhardt, E. S.: Salinity effects on greenhouse gas emissions
576 from wetland soils are contingent upon hydrologic setting: a microcosm experiment,
577 *Biogeochemistry*, 1-16, <https://doi.org/10.1007/s10533-018-0486-2>, 2018.

578 Baldwin, D. S., Rees, G. N., Mitchell, A. M., Watson, G., and Williams, J.: The short-term
579 effects of salinization on anaerobic nutrient cycling and microbial community structure in
580 sediment from a freshwater wetland, *Wetlands*, 26, 455-464,
581 [https://doi.org/10.1672/0277-5212\(2006\)26\[455:TSEOSO\]2.0.CO;2](https://doi.org/10.1672/0277-5212(2006)26[455:TSEOSO]2.0.CO;2), 2006.

582 Batjes, N. H.: Total carbon and nitrogen in the soils of the world, *Eur. J. Soil Sci.*, 47, 151-163,
583 https://doi.org/10.1111/ejss.12114_2, 1996.

584 Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., and Trettin, C.: The carbon balance
585 of North American wetlands, *Wetlands*, 26, 889-916, [https://doi.org/10.1672/0277-5212\(2006\)26\[889:TCBONA\]2.0.CO;2](https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2), 2006.

587 Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K. and Zhuang, Q.: Methane emissions from
588 wetlands: biogeochemical, microbial, and modeling perspectives from local to global
589 scales, *Global Change Biol.*, 19, 1325-1346, <https://doi.org/10.1111/gcb.12131>, 2013.

590 Chambers, L. G., Reddy, K. R., and Osborne, T. Z.: Short-term response of carbon cycling to
591 salinity pulses in a freshwater wetland, *Soil Sci. Soc. Am. J.*, 75, 2000-2007,
592 doi:10.2136/sssaj2011.0026, 2011.

593 Chambers, L. G., Guevara, R., Boyer, J. N., Troxler, T. G. and Davis, S. E.: Effects of salinity
594 and inundation on microbial community structure and function in a mangrove peat soil,
595 *Wetlands*, 36, 361-371, <https://doi.org/10.1007/s13157-016-0745-8>, 2016.

596 Chasar, L., Chanton, J., Glaser, P., and Siegel, D.: Methane concentration and stable isotope
597 distribution as evidence of rhizospheric processes: Comparison of a fen and bog in the
598 Glacial Lake Agassiz Peatland complex, *Annals of Botany*, 86, 655-663,
599 <https://doi.org/10.1006/anbo.2000.1172>, 2000.

600 Conner, W., McLeod, K. and McCarron, J.: Flooding and salinity effects on growth and survival
601 of four common forested wetland species, *Wetlands Ecol. Manage.*, 5, 99-109,
602 <https://doi.org/10.1023/A:1008251127131>, 1997.

603 Conrad, R., Klose, M., Claus, P., and Enrich-Prast, A.: Methanogenic pathway, ^{13}C isotope
604 fractionation, and archaeal community composition in the sediment of two clear-water
605 lakes of Amazonia, *Limnol. Oceanogr.*, 55, 689-
606 702, <https://doi.org/10.4319/lo.2010.55.2.0689>, 2010.

607 Craft, C., Clough, J., Ehman, J., Guo, H., Joye, S., Machmuller, M., Park, R., and Pennings, S.:
608 Effects of accelerated sea level rise on delivery of ecosystem services provided by tidal
609 marshes: a simulation of the Georgia (USA) Coast, *Frontiers in Ecology and the
610 Environment*, 7, 73, 2009.

611 Department of Defense (DOD): Responding to climate change, *Natural Selections*, 6, 2-4, 2010.

612 Feng, X., Xu, Y., Jaffé, R., Schlesinger, W. H., and Simpson, M. J.: Turnover rates of
613 hydrolysable aliphatic lipids in Duke Forest soils determined by compound specific ^{13}C
614 isotopic analysis, *Org. Geochem.*, 41, 573-579,
615 <https://doi.org/10.1016/j.orggeochem.2010.02.013>, 2010.

616 Fisk, M., Santangelo, S., and Minick, K.: Carbon mineralization is promoted by phosphorus and
617 reduced by nitrogen addition in the organic horizon of northern hardwood forests, *Soil
618 Biol. Biochem.*, 81, 212-218, <https://doi.org/10.1016/j.soilbio.2014.11.022>, 2015.

619 Joergensen, R. G.: The fumigation-extraction method to estimate soil microbial biomass:
620 calibration of the kEC value. *Soil Biol. Biochem.*, 28, 25-31,
621 [https://doi.org/10.1016/0038-0717\(95\)00102-6](https://doi.org/10.1016/0038-0717(95)00102-6), 1996.

622 Johnson, M.G., and Kern, J.S.: Quantifying the organic carbon held in forested soils of the
623 United States and Puerto Rico. Chapter 4, Kimble, JS (ed.), *The Potential of U.S. Forest
624 Soils to Sequester Carbon and Mitigate the Greenhouse Effect*. CRC Press LLC, Boca
625 Raton, FL, 2003.

626 Karegar, M. A., Dixon, T. H., Malservisi, R., Kusche, J., and Engelhart, S. E.: Nuisance flooding
627 and relative sea-level rise: the importance of present-day land motion, *Scientific reports*,
628 7, 11197, doi: 10.1038/s41598-017-11544-y, 2017.

629 Kim, D., Oren, R., and Qian, S. S.: Response to CO₂ enrichment of understory vegetation in the
630 shade of forests, *Global Change Biol.*, 22, 944-956, <https://doi.org/10.1111/gcb.13126>,
631 2016.

632 Krauss, K. W., Whitbeck, J. L., and Howard, R. J.: On the relative roles of hydrology, salinity,
633 temperature, and root productivity in controlling soil respiration from coastal swamps
634 (freshwater), *Plant Soil*, 358, 265-274, <https://doi.org/10.1007/s11104-012-1182-y>,
635 2012.

636 Krohn, J., Lozanovska, I., Kuzyakov, Y., Parvin, S., Dorodnikov, M.: CH₄ and CO₂ production
637 below two contrasting peatland micro-relief forms: An inhibitor and $\delta^{13}\text{C}$ study. *Science*

638 of The Total Environment, 586, 142-151, <https://doi.org/10.1016/j.scitotenv.2017.01.192>,
639 2017.

640 Krzycki, J. A., Kenealy, W. R., Deniro, M. J., and Zeikus, J. G.: Stable carbon isotope
641 fractionation by *Methanosarcina barkeri* during methanogenesis from acetate, methanol,
642 or carbon dioxide-hydrogen, Appl. Environ. Microbiol., 53, 2597-2599, 1987.

643 Langston, A. K., Kaplan, D. A., and Putz, F. E.: A casualty of climate change? Loss of
644 freshwater forest islands on Florida's Gulf Coast, Global Change Biol., 23, 5383-5397,
645 <https://doi.org/10.1111/gcb.13805>, 2017.

646 Le Mer, J., and Roger, P.: Production, oxidation, emission and consumption of methane by soils:
647 a review, Eur. J. Soil Biol., 37, 25-50, [https://doi.org/10.1016/S1164-5563\(01\)01067-6](https://doi.org/10.1016/S1164-5563(01)01067-6),
648 2001.

649 Lee, J. K., Park, R. A., and Mausel, P. W.: Application of geoprocessing and simulation
650 modeling to estimate impacts of sea level rise on the northeast coast of Florida,
651 Photogrammetric Engineering and Remote Sensing;(United States), 58, 1992.

652 Lozanovska, I., Kuzyakov, Y., Krohn, J., Parvin, S., and Dorodnikov, M.: Effects of nitrate and
653 sulfate on greenhouse gas emission potentials from microform-derived peats of a boreal
654 peatland: A ¹³C tracer study, Soil Biol. Biochem., 100, 182-191,
655 <https://doi.org/10.1016/j.soilbio.2016.06.018>, 2016.

656 Marton, J. M., Herbert, E. R., and Craft, C. B.: Effects of salinity on denitrification and
657 greenhouse gas production from laboratory-incubated tidal forest soils, Wetlands, 32,
658 347-357, <https://doi.org/10.1007/s13157-012-0270-3>, 2012.

659 Miao, G., Noormets, A., Domec, J., Trettin, C.C., McNulty, S.G., Sun, G., and King, J.S.: The
660 effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland
661 in the southeastern US, Biogeosciences 118, 1748-1762, doi:10.1002/2013JG002354, 2013.

662 Minick, K. J., Kelley, A. M., Miao, G., Li, X., Noormets, A., Mitra, B., and King, J. S.:
663 Microtopography alters hydrology, phenol oxidase activity and nutrient availability in
664 organic soils of a coastal freshwater forested wetland, Wetlands 39, 263-273,
665 <https://doi.org/10.1007/s13157-018-1107-5>, 2019a.

666 Minick, K. J., Mitra, B., Li, X., Noormets, A., and King, J. S.: Microtopography mediates
667 response of CO₂ and CH₄ fluxes and microbial activity to temperature and moisture in a
668 coastal wetland: Evidence from a laboratory experiment, Biogeochemistry, 2019b.

669 Minick, K. J., Mitra, B., Li, X., Noormets, A., and King, J. S.: Water table drawdown alters soil
670 and microbial carbon pool size and isotope composition in coastal freshwater forested
671 wetlands, Frontiers in Forests and Global Change, 2, 1-19,
672 <https://doi.org/10.3389/ffgc.2019.00007>, 2019c.

673 Morrissey, E. M., Gillespie, J. L., Morina, J. C., and Franklin, R. B.: Salinity affects microbial
674 activity and soil organic matter content in tidal wetlands, Global Change Biol., 20, 1351-
675 1362, <https://doi.org/10.1111/gcb.12431>, 2014.

676 Neubauer, S., Franklin, R., and Berrier, D.: Saltwater intrusion into tidal freshwater marshes
677 alters the biogeochemical processing of organic carbon, Biogeosciences, 10, 8171-8183,
678 <https://doi.org/10.5194/bg-10-8171-2013>, 2013.

679 Paerl, H. W., Crosswell, J. R., Van Dam, B., Hall, N. S., Rossignol, K. L., Osburn, C. L.,
680 Hounshell, A. G., Sloup, R. S., and Harding, L. W.: Two decades of tropical cyclone
681 impacts on North Carolina's estuarine carbon, nutrient and phytoplankton dynamics:

682 implications for biogeochemical cycling and water quality in a stormier world,

683 Biogeochemistry, 141, 307-332, <https://doi.org/10.1007/s10533-018-0438-x>, 2018.

684 Riggs, S. R.: Sediment evolution and habitat function of organic-rich muds within the Albemarle
685 estuarine system, North Carolina, Estuaries 19, 169–185,
686 <https://doi.org/10.2307/1352223>, 1996.

687 Riggs, S. R., and Ames, D. V.: Drowning the North Carolina coast: Sea-level rise and estuarine
688 dynamics. North Carolina Sea Grant, Raleigh, NC, 2008.

689 Sallenger, A. H., Doran, K. S., and Howd, P. A.: Hotspot of accelerated sea-level rise on the
690 Atlantic coast of North America, Nature Climate Change, 2, 884, doi:10.1038/nclimate1597,
691 2012.

692 Schlesinger, W., Bernhardt, E., DeLucia, E., Ellsworth, D., Finzi, A., Hendrey, G., Hofmockel,
693 K., Lichter, J., Matamala, R. and Moore, D.: The Duke Forest FACE experiment: CO₂
694 enrichment of a loblolly pine forest, in: Managed Ecosystems and CO₂, Springer, 197-
695 212, 2006.

696 Sinsabaugh, R., Antibus, R., Linkins, A., McClaugherty, C., Rayburn, L., Repert, D., and
697 Weiland, T.: Wood decomposition over a first-order watershed: mass loss as a function of
698 lignocellulase activity, Soil Biol. Biochem., 24, 743-749, [https://doi.org/10.1016/0038-0717\(92\)90248-V](https://doi.org/10.1016/0038-0717(92)90248-V), 1992.

700 Sinsabaugh, R. L., Antibus, R., Linkins, A., McClaugherty, C., Rayburn, L., Repert, D., and
701 Weiland, T.: Wood decomposition: nitrogen and phosphorus dynamics in relation to
702 extracellular enzyme activity, Ecology, 74, 1586-1593, <https://doi.org/10.2307/1940086>,
703 1993.

704 Sugimoto, A., and Wada, E.: Carbon isotopic composition of bacterial methane in a soil
705 incubation experiment: Contributions of acetate and CO₂H₂, *Geochim. Cosmochim. Acta*,
706 57, 4015-4027, [https://doi.org/10.1016/0016-7037\(93\)90350-6](https://doi.org/10.1016/0016-7037(93)90350-6), 1993.

707 Titus, J. G., and Richman, C.: Maps of lands vulnerable to sea level rise: modeled elevations along
708 the US Atlantic and Gulf coasts, *Climate research*, 18, 205-228, doi:10.3354/cr01, 2001.

709 Vance, E. D., Brookes, P. C. and Jenkinson, D. S.: An extraction method for measuring soil
710 microbial biomass C, *Soil Biol. Biochem.*, 19, 703-707, [https://doi.org/10.1016/0038-0717\(87\)90052-6](https://doi.org/10.1016/0038-0717(87)90052-6), 1987.

712 West, W. E., Coloso, J. J., and Jones, S. E.: Effects of algal and terrestrial carbon on methane
713 production rates and methanogen community structure in a temperate lake sediment,
714 *Freshwat. Biol.*, 57, 949-955, <https://doi.org/10.1111/j.1365-2427.2012.02755.x>, 2012.

715 Weston, N. B., Vile, M. A., Neubauer, S. C., and Velinsky, D. J.: Accelerated microbial organic
716 matter mineralization following salt-water intrusion into tidal freshwater marsh soils,
717 *Biogeochemistry*, 102, 135-151, <https://doi.org/10.1007/s10533-010-9427-4>, 2011.

718 Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in marine and
719 freshwater environments: CO₂ reduction vs. acetate fermentation—isotope evidence,
720 *Geochim. Cosmochim. Acta*, 50, 693-709, [https://doi.org/10.1016/0016-7037\(86\)90346-7](https://doi.org/10.1016/0016-7037(86)90346-7), 1986.

722 Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial formation and oxidation of
723 methane, *Chem. Geol.*, 161, 291-314, [https://doi.org/10.1016/S0009-2541\(99\)00092-3](https://doi.org/10.1016/S0009-2541(99)00092-3),
724 1999.

725 Winfrey, M. R., and Zeikus, J. G.: Effect of sulfate on carbon and electron flow during
726 microbial methanogenesis in freshwater sediments, *Appl. Environ. Microbiol.*, 33, 275-
727 281, 1977.

728

729

730

731

732

733

734

735 **Tables and Figures**

736
737 Table 1. Total organic C (TOC) and ion concentrations in freshwater (0 ppt), 2.5 ppt saltwater, and 5.0 ppt saltwater. Standard errors
738 of the mean are in parenthesis (n=4). Values with different superscript lowercase letters are significantly different ($P < 0.05$).
739

Treatment	TOC	SO ₄ ²⁻	Cl ⁻	Na ⁺	NH ₄ ⁺	NO ₃ ⁻	PO ₄ ³⁻	Ca ²⁺	Mg ²⁺	K ⁺
0 ppt	44 (0.3) ^a	1 (0.1) ^a	17 (0.2) ^a	8 (0.1) ^a	0.00 (0.000) ^a	0.00 (0.000) ^a	1 (0.0) ^a	1 (0.0) ^a	1 (0.0) ^a	0.2 (0.0) ^a
2.5 ppt	40 (0.7) ^b	162 (1.3) ^b	1391 (42.8) ^b	538 (19.2) ^b	0.06 (0.004) ^b	0.06 (0.000) ^a	0.01 (0.000) ^a	23 (0.3) ^b	64 (2.6) ^b	19 (0.3) ^b
5.0 ppt	38 (0.1) ^b	319 (6.5) ^c	2695 (22.6) ^c	1039 (15.9) ^c	0.07 (0.004) ^b	0.07 (0.004) ^a	0.01 (0.000) ^b	44 (1.0) ^c	125 (2.1) ^c	36 (0.4) ^c

740

741

742

743

744

745

746

747

748

749

750

751 Table 2. Post-incubation soil organic C (SOC) concentration (g kg^{-1}), SOC $\delta^{13}\text{C}$ (‰), wood-derived SOC (%) (estimated from ^{13}C
752 two pool mixing model) for soil samples collected from the field and incubated for 98 d in the laboratory under dry conditions (Dry)
753 or fully saturated with freshwater (0 ppt) or saltwater (2.5 and 5.0 ppt) and with (+ Wood) or without addition of ^{13}C -depleted wood.
754 Pre-incubation data was measured from the four replicates prior to incubation and therefore have the same for each treatment.
755 Standard errors of the mean are in parenthesis (n=4). Data from wood-free and wood-amended soils were analyzed separately. Values
756 followed by different superscript lowercase letters are significantly different between the four treatments of the non-wood or wood
757 amended soils ($P < 0.05$).
758

Treatment	Post-SOC Concentration (g kg^{-1})	Post-SOC $\delta^{13}\text{C}$ (‰)	Wood-derived SOC (%)
Dry	495 (1.5) ^b	-29.5 (0.20) ^a	.
0 ppt	493 (3.3) ^b	-29.5 (0.18) ^a	.
2.5 ppt	488 (4.9) ^b	-29.5 (0.20) ^a	.
5.0 ppt	460 (8.6) ^a	-29.5 (0.16) ^a	.
Dry + Wood	491 (4.7) ^{ab}	-30.4 (0.30) ^a	8 (2.5)
0 ppt + Wood	502 (4.6) ^a	-30.7 (0.22) ^a	12 (0.4)
2.5 ppt + Wood	477 (4.9) ^{bc}	-30.6 (0.35) ^a	10 (1.4)
5.0 ppt + Wood	470 (4.6) ^c	-30.4 (0.14) ^a	10 (2.0)

771 Table 3. Results (F-values and significance) from the repeated measures ANOVA of pH, Eh, microbial biomass C (MBC), $\delta^{13}\text{C}$
772 isotopic signature of MBC, $\delta^{13}\text{CO}_2$ and $\delta^{13}\text{CH}_4$ measured in soils collected from a coastal freshwater forested wetland and incubated in
773 the laboratory for 98 d under fully saturated with either freshwater or salt water (2.5 ppt and 5.0 ppt). Data from wood-free and wood-
774 amended soils were analyzed separately.

Source	pH	Eh	MBC	MBC ^{13}C	$\delta^{13}\text{CO}_2$	$\delta^{13}\text{CH}_4$
Wood-Free						
Treatment	26.6***	4.5*	3.7*	3.2*	351.7***	60.5***
Time	4.4***	40.7***	40.9***	15.8***	24.2***	8.3***
Treatment x Treatment	1.22	3.7***	27.3***	3.3*	6.4***	1.1
Wood-Amended						
Treatment	29.0***	13.6***	39.9***	2.6	129.8***	0.3
Time	18.3***	30.1***	111.0***	3.7	34.8***	1.4
Treatment x Treatment	1.4	3.4***	24.2***	5.5**	8.3***	1.0

775 *P < 0.05, **P < 0.01, ***P < 0.0001

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791 Table 4. Results (F-values and significance) from the one-way ANOVA of cumulative gas production and extracellular enzyme
792 activity (BG: β -glucosidase; PER: peroxidase; NAGase: glucosaminidase; AP: alkaline phosphatase; and AS: arylsulfatase) from soils
793 collected from a coastal freshwater forested wetland and incubated in the laboratory for 98 d under dry conditions or fully saturated
794 with either freshwater or salt water (2.5 ppt and 5.0 ppt). Data from wood-free and wood-amended soils were analyzed separately.
795

Source	CO ₂	CH ₄	BG	PER	NAGase	AP	AS
Wood-Free							
Treatment	20.4***	15.6***	7.2**	11.9**	9.5**	0.9	15.8**
Wood-Amended							
Treatment	13.3**	36.7***	16.6**	2.5	32.0***	2.3	31.2***

*P < 0.05, **P < 0.01, ***P < 0.0001

815 Table 5. Initial (1 d) and final (98 d) microbial biomass C (MBC) concentration (mg kg⁻¹), MBC δ¹³C (‰), wood-derived MBC (%)
 816 (estimated using ¹³C two pool mixing model) and cumulative extracellular enzyme activity (μmol g⁻¹) (BG: β-glucosidase; PER:
 817 peroxidase; NAGase: glucosaminidase; AP: alkaline phosphatase; and AS: arylsulphatase) for soils incubated under dry conditions
 818 (Dry) or saturated with freshwater (0 ppt) or saltwater (2.5 and 5.0 ppt) and with (+ Wood) or without addition of ¹³C-depleted wood.
 819 Standard errors of the mean are in parenthesis (n=4). Values followed by different superscript lowercase letters are significantly
 820 different between the four treatments for the wood-free or wood-amended soils ($P < 0.05$).
 821

Treatment	Initial MBC (mg kg ⁻¹)	Final MBC (mg kg ⁻¹)	Initial MBC δ ¹³ C (‰)	Final MBC δ ¹³ C (‰)	Wood- derived MBC (%)	BG	PER	NAGase	AP	AS
Dry	2238 (400) ^c	4077 (387) ^a	-27.0 (0.43) ^a	-28.4 (0.28) ^{ab}	.	547 (37) ^a	176 (14) ^a	240 (20) ^a	7599 (1038) ^a	47 (2) ^a
0 ppt	3982 (196) ^{ab}	2657 (344) ^b	-27.3 (0.19) ^a	-28.9 (0.16) ^a	.	479 (18) ^{ab}	197 (38) ^a	194 (11) ^{ab}	6308 (517) ^a	47 (8) ^a
2.5 ppt	7334 (117) ^a	2495 (195) ^b	-27.8 (0.51) ^a	-27.9 (0.03) ^{ab}	.	389 (33) ^b	412 (75) ^b	159 (9) ^b	6539 (183) ^a	19 (3) ^b
5.0 ppt	6483 (104) ^{ab}	2114 (135) ^b	-27.0 (0.30) ^a	-27.4 (0.15) ^b	.	379 (27) ^b	490 (30) ^b	154 (8) ^b	6387 (529) ^a	15 (2) ^b
Dry + Wood	4444 (579) ^a	5174 (249) ^a	-29.3 (0.40) ^a	-32.1 (0.44) ^a	31 (4.9) ^a	554 (37) ^a	243 (22) ^a	275 (17) ^a	7247 (887) ^a	40 (2) ^a
0 ppt + Wood	5376 (330) ^a	1832 (102) ^b	-29.8 (0.37) ^a	-29.4 (0.15) ^b	4 (1.1) ^b	349 (24) ^b	275 (44) ^a	153 (11) ^b	4965 (459) ^a	36 (3) ^a
2.5 ppt + Wood	5173 (405) ^a	748 (124) ^c	-30.1 (0.25) ^a	-30.4 (0.95) ^{ab}	21 (7.8) ^a	368 (12) ^b	365 (30) ^a	150 (6) ^b	5548 (653) ^a	14 (3) ^b
5.0 ppt + Wood	2123 (400) ^b	790 (87) ^c	-29.9 (0.43) ^a	-29.7 (0.37) ^b	18 (1.9) ^{ab}	369 (13) ^b	326 (38) ^a	150 (6) ^b	5893 (495) ^a	13 (2) ^b

823 Figure 1. pH for wood-free soils (A) and wood-amended soils (B) and redox potential for wood-
824 free soils (C) and wood-amended soils (D) measured over the course of the 98 d laboratory
825 incubation. Symbols represent mean with standard error (n=4). Treatment means with different
826 lowercase letters are significantly different within a sampling time point ($P < 0.05$).
827

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846 Figure 2. Cumulative CO₂ production for wood-free soils (A), wood-amended soils (B), and the
 847 wood-associated CO₂ production (C); and cumulative CH₄ production for wood free soils (D),
 848 wood amended soils (E), and the wood-associated CH₄ production (F). Bars represent mean
 849 with standard error (n=4). Bars with different uppercase letters are significantly different ($P <$
 850 0.05).

851
 852

853
 854
 855

856 Figure 3. The $\delta^{13}\text{CO}_2$ values measured over the course of the 98 d laboratory incubation for
857 wood-free soils (A), wood-amended soils (B), and the proportion of wood-derived CO_2 (C).
858 Bars represent mean with standard error (n=4). Treatment means with different lowercase letters
859 are significantly different within a sampling time point ($P < 0.05$).
860

862 Figure 4. The $\delta^{13}\text{CH}_4$ values measured over the course of the 98 d laboratory incubation for
863 wood-free soils (A) and wood-amended soils (B) and the average $\delta^{13}\text{CH}_4$ across the entire
864 incubation for wood-free soils (C) and wood-amended soils (D). Symbols or bars represent
865 mean with standard error (n=4). Treatment means with different lowercase letters are
866 significantly different within a sampling time point ($P < 0.05$).
867

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885

886 Figure 5. Wood-associated (Wood-Amended – Wood Free) enzyme activity. Bars represent
887 mean with standard error (n=4). Treatment means with different upper letters are significantly
888 different ($P < 0.05$).
889

890